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ABSTRACT

Large Language Vision Models(LLVMs) have illustrated significant improve-
ments across various multimodal tasks. To enhance the usability of LLVMs,
preference alignment has become a standard technique. The Direct Preference
Optimization (DPO) has emerged as a de-facto preference alignment algorithm
which generally improves LLVMs single image performance, and LLVMs as a
direct consequence struggle in multi-image scenarios. Previous studies have illus-
trated that LLVMs hallucinate when prompt contains containing multiple images
and reference such as ”In Image1”. The misalignment can be improved using
three broad solutions: (i) generating scalable dataset generation pipelines; (ii) im-
proving alignment loss; and (iii) improving alignment at inference time. In this
work, we present, Attention-aware Multi-Image Augmented Direct Preference
Optimization, a preference alignment approach to handle multi-image inputs. Our
improved alignment loss has shown promising results, with an improvement of
8.5% in terms of accuracy over the base model. Lastly, we also tackle improving
alignment at inference time, by extending the previous studies on adaptive atten-
tion scaling at inference time to multi-image inputs and see an improvement of
10% over the base model. We make code publicly available for research purposes
at https://github.com/harsh-sutariya/AA-DPO

1 INTRODUCTION

Large Vision-Language Models (LVLMs) have emerged as a powerful reasoners, trained on di-
verse web-scale data. LVLMs excel at single image queries, as both pretraining and post-training
processes are primarily designed around single-image inputs. However, in real-world applications,
multi-image understanding and reasoning is crucial to increase usability across industries. While
prosperity models such as GPT-4o excel at multi-image queries, such performance gains are miss-
ing from open-sourced models.

Recent works have addressed the shortcoming of models for multi-image understanding by incorpo-
rating multi-image examples during pre-training (Su et al. (2023)), post-training (Liu et al. (2025)),
and benchmarking dataset (Meng et al. (2025)). One of the drawbacks of the recent developments
has been the loss performance on single-image tasks post multi-image finetuning or pre-training.
Liu et al. (2025) proposed MIA-DPO, a highly automatic scalable data generation pipeline for Di-
rect Preference Optimization(DPO) which has shown to improve the multi-image performance with
little to no performance degradation on single-image benchmarks. The data generation pipeline uses
existing single-image benchmarks by randomly sampling multiple images for a single query. Fur-
thermore, for generating (chosen, rejected) pairs, model’s attention ratio on target image was also
used which acts as a soft loss during DPO training.

We propose a modification to the DPO loss by introducing an attention-based penalty that discour-
ages the model from incorrectly attending to the irrelevant images. This modification is motivated
by observations in Liu et al. (2025), which show that the model often allocates attention to irrele-
vant images, despite explicit references to image indices in the query. Our DPO loss modification is
model agnostic and scalable to different multi-image QA settings.
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Figure 1: Example of Multi-Image hallucination. When presented with a multi-image query,
the LLaVA1.5-7B model allocates only 29.43% of its attention to the target image, resulting in a
hallucinated response. After fine-tuning with our proposed Attention-aware DPO loss, the model
correctly answers the query, increasing the attention ratio on the target image to 33.93%.

Finally, we extend AdaptVis (Chen et al. (2025))—which adaptively scales attention scores based
on the model’s confidence to the multi-image setting. A known limitation of AdaptVis is that if the
model is confidently incorrect, scaling the attention scores can further degrade the quality of the gen-
erated output. By integrating our model, trained with the proposed modified loss, into the AdaptVis
pipeline, we demonstrate that enhancing the base model’s capability for multi-image reasoning can
be further enhanced using AdaptVis pipeline. Figure 2 illustrates our proposed pipeline.

In summary, our key contributions are as follows:

1. We contribute to the understanding of various forms of multi-image hallucinations and
propose using attention patterns as a signal for mitigating hallucinations.

2. We further extend the inference time optimizations proposed in AdaptViz to multi-image
hallucinations setting.

2 RELATED WORK

Hallucination in Large Vision-Language models is a significant issue. Strong language prior from
the large-scale web data used for pre-training is one of the main reasons for this phenomenon (Min
et al. (2025)). Work on mitigating hallucinations mainly focuses on post-training methods such as
preference learning and inference-time strategies such as contrastive decoding. Below we briefly
cover related works in both of these areas.
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2.1 VISUAL PREFERENCE LEARNING

Visual preference learning involves aligning vision-language models with human preferences based
on chosen-rejected data pairs. Specifically, the chosen sample reflect the ground truth while rejected
samples contain hallucinated output. Training is carried out via policy learning methods like DPO
(Rafailov et al. (2024)) and PPO (Schulman et al. (2017)). Yu et al. (2024a) introduce dense DPO
to incorporate detailed feedback from human annotators, giving more weightage to correct samples
in the loss function. Zhao et al. (2024) construct synthetic data pairs for the chosen-rejected dataset
for use in DPO. Further, Wang et al. (2024a) optimize for image preference by proposing a multi-
modal DPO objective to improve preference learning. Moreover, Yu et al. (2024b) incorporate AI
feedback from open-source LVLMs to generate high-quality preference data and also introduce it-
erative feedback learning to limit distribution shift. Although a lot of methods have been employed
for the single-image scenarios, none of the techniques involve using explicit training signal for the
multi-image case.

2.2 SPECIAL DECODING METHODS

In this body of work, hallucination is tackled through specially adapted decoding techniques. Tra-
ditional inference-time decoding is vulnerable to producing hallucinatory output due to the inherent
probabilistic nature. Contrastive decoding methods such as Leng et al. (2023), Wang et al. (2024b),
Suo et al. (2025) aim to reduce the dependence on linguistic prior using disturbances as inputs.
Further, as generation progresses LVLMs increasingly rely on language information while neglect-
ing visual tokens Min et al. (2025). Chen et al. (2025) introduce AdaptVis - a technique which
uses confidence score-based thresholding to adaptively scale attention onto image tokens in order
to steer the LVLM response. Recently, Lyu et al. (2025) combine contrastive decoding and DPO
training to effectively alleviate object hallucinations. However all these methods focus exclusively
on single-image cases while we extend the idea to multi-image settings.

3 METHOD

3.1 ATTENTION AWARE DPO

Direct Preference Optimization (DPO) training uses pairs of model responses to adjust the model’s
probabilities in favor of the better answer. Formally, given a question content x, a chosen answer
y+ and a rejected answer y−, the DPO objective Rafailov et al. (2023) maximizes the difference in
log-likelihood between the two:

LDPO(θ) = − log σ
(
β
(
log πθ(y

+ | x)− log πθ(y
− | x)

))
, (1)

where σ is the sigmoid function and β is the scaling hyperparameter. Intuitively, this loss is low
(good) when the model assigns higher probability to the chosen answer than to the rejected answer,
and high when the model mistakenly prefers the wrong answer. DPO thus trains θ to align with the
preference order without needing a separate reward model Liu et al. (2025).

In our attention aware DPO, we augment this loss with an additional term that penalizes mis-focused
attention. We want the model to not only rank the correct answer higher, but alse to have attended
to the correct image when producing that answer. We obtain the attention from the cross-attention
weights of the decoder over image tokens, averaged across decoding steps for the answer Liu et al.
(2025); Chen et al. (2025). The attention ratio is the proportion of attention allocated to the correct
image. In a well grounded scenario, we expect the attention ratio to be high (the model looked at
the right image for the correct answer) and low attention ratio signifies the model is hallucinating
(the model was looking elsewhere, which is often why it went wrong). However standard DPO does
not directly account for this internal behavior, it only considers the output probabilities. To inject
attention alignment into training, we define an attention penalty term:

Lattn(θ) = max
{
0,

(
δ − acorect image

aall images

)}
, (2)
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Figure 2: Overview of our proposed method. First, we augment single-image datasets such as
LLaVA665k to multi-image setting. Using attention-aware sampling, we generate a (chosen, re-
jected) pair for DPO finetuning. We then finetune the model with our attention-aware DPO loss.
Lastly, we couple the benefits of our finetuned model and AdaptVis for higher quality output gener-
ation.

where δ is a threshold hyperparameter (e.g. δ = 0.75). This term is 0 when the attention ratio
is greater than at least δ, which is a desirable situation. If, however, the chosen answer did not
have sufficiently higher focus on the target image, then Lattn becomes positive, growing linearly
with the excess of non-target attention. We found the hinge style formulation effective: it gently
penalizes cases where the model isn’t distinctly focusing on the right image. This encourages a
wider separation in attention patterns Cortes & Vapnik (1995).

Our final loss combines the preference loss and the attention penalty:

Ltotal(θ) = LDPO(θ) + λLattn(θ) (3)

where λ controls the strength of the attention term. In practice, we tune λ to balance the two objec-
tive (alignment of output choice vs. alignment of attention). Our method is architecture agnostic: as
long as the model yields attention weights, we can apply this loss. During training time, we utilize
layers from 14 to 22 for calculation of attention ratio loss, as illustrated in Figure 3, these layers
consistently allocate highest attention on the correct target image. Averaging the attention loss over
these layers helps stabilize training, leading to more consistent optimization of the model.

3.2 INFERENCE TIME OPTIMIZATION

Previous work (Azaria & Mitchell (2023), Kadavath et al. (2022), Chen et al. (2024)) has highlighted
how the model’s generation confidence itself can be used as an indicator of its output trustworthiness.
Adapt-Vis (Chen et al. (2025)) borrows this concept to assign the threshold for scaling attention
logits through which we can modify the attention distribution of the LVLM at inference time. Since
image tokens receive a small fraction of the total attention as compared to text tokens even though
they form a good chunk of the total tokens - we dynamically scale the raw attention logits to sharpen
or smoothen the attention distribution. The decision boundaries for when to perform scaling is
determined by a confidence threshold (β) - which is the output probability of the first token. If the
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Figure 3: Layer-wise analysis of attention ratio. We perform a layer-wise analysis of attention
ratio of LLaVA1.5 and observe that layers 14 to 22 consistently allocate highest attention to correct
image target across all three input formats.

output probability is higher than a certain threshold - indicating that the model is confident in its
response - then we sharpen the attention distribution by multiplying the raw logits with a constant
factor (α > 1). This in turn forces the model to pay more attention to the visual tokens, thus
reinforcing correctness. On the other hand if the output probability is lower then the threshold then
we smoothen the attention distribution by down-scaling the raw logits by a constant factor (α < 1).
This forces the model to not look too closely at a few areas and instead spread out its focus to the
other areas where there could be possible clues.

More specifically, this scaling of the raw logits is done only for the attention of the final input token
to the image tokens - allowing us in a way to steer the LVLM’s generation. Mathematically, this
intervention is expressed as:

A
(l,h)
n,j =

{
α1A

(l,h)
n,j if j ∈ I

A
(l,h)
n,j otherwise

if C < β (4)

A
(l,h)
n,j =

{
α2A

(l,h)
n,j if j ∈ I

A
(l,h)
n,j otherwise

if C > β (5)

3.3 DATASET

We evaluate the models using the PixMo datasetDeitke et al. (2024) specifically designed to simulate
various multi image scenarios: Sequence (multiple unrelated images presented sequentially), Grid
Collage (multiple images combined into a labeled composite), and Pic-in-Pic (one image overlaid
onto another). Each format aims to provoke specific hallucination types, such as sequence confusion
or element interference. The test set consists of 500 test questions per format which ensures diverse
coverage of typical hallucination scenarios encountered in multi image question answering tasks.
The number of images per query are also equally split between the range of 2 to 8.

4 RESULTS

We present the experimental outcomes evaluating our proposed method Attention Aware DPO and
it’s inference time optimization variant (based on AdaptVis Chen et al. (2025)) against baseline
models including the base LLaVA model Liu et al. (2024) and MIA-DPO aligned model Liu et al.
(2025). We use the same hyper-parameter values for α1 = 2.0, α2 = 0.5, β = 0.3 as Chen et al.
(2025) and the same learning rate, lora rank, and dropout from Liu et al. (2025). Further we use
λ = 0.9, δ = 0.75 and train using our loss for 1 Epoch on 4xRTX8000 for 72 hours.

We report comprehensive quantitative results across multiple multi image QA setups: Sequence,
Grid Collage, and Pic-in-Pic, using PixMo evaluation dataset. Metrics include accuracy, relevancy,
clarity, and completeness as judged by an LLM, and attention ratios indicating model focus correct-
ness. We selected Gemini Team (2025) as our LLM-as-a-Judge model, owing to its strong perfor-
mance across a wide range of multimodal benchmarks. We also provide the evaluation prompt in
Figure A1. Lastly, we also provide qualitative results in Figure A2.

For evaluation we define the following metrics:
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1. Relevance: Assesses whether the predicted answer directly addresses the question, taking
into account the information provided in the accompanying caption. The model is asked to
score between 1 to 5, 5 being the highest.

2. Accuracy: Measures the factual correctness of the prediction by comparing it to the ground
truth. The answer should faithfully reflect the ground truth without introducing inaccura-
cies. The model is asked to score between 1 to 5, 5 being the highest.

3. Clarity: Evaluates the readability and coherence of the response. Predictions should be
free from repetition, ambiguity, or logical inconsistencies that could impede understanding.
The model is asked to score between 1 to 5, 5 being the highest.

4. Completeness: Determines whether the prediction fully captures the scope of the ground
truth answer. The answer should not omit essential information and should include all
necessary details to be considered comprehensive. The model is asked to score between 1
to 5, 5 being the highest.

Model Sequence Collage Pic-in-Pic
LLaVA-1.5-7B 3.99 3.96 4.08
+ MIA-DPO 4.05 4.05 4.15
+ Ours 4.08 4.07 4.18
+ Ours w/ Adapt-Vis 4.10 4.06 4.19

Table 1: Combined rubric score (mean of relevance, accuracy, clarity, and completeness) across
datasets. Highest per column is bolded.

Model Sequence Collage Pic-in-Pic
LLaVA-1.5-7B 2.95 2.88 3.17
+ MIA-DPO 3.12 3.09 3.31
+ Ours 3.20 3.18 3.40
+ Ours w/ Adapt-Vis 3.25 3.22 3.46

Table 2: Average accuracy scores for each model across three datasets. Best model per dataset in
bold.

Model Sequence Collage Pic-in-Pic
LLaVA-1.5-7B 0.3987 0.4009 0.6157
+ MIA-DPO 0.3899 0.3921 0.6084
+ Ours 0.3927 0.4002 0.6179
+ Ours w/ Adapt-Vis 0.3933 0.4007 0.6181

Table 3: Average attention ratio for each model across datasets. Highest attention per dataset in
bold.

Our Attention Aware DPO improves the multi image QA performance. Specifically, it achieved an
average accuracy score of 3.20, as observed from Table 2, surpassing the base LLaVA model (2.95)
Liu et al. (2024) and MIA-DPO (3.12) Liu et al. (2025). Importantly, our model exhibited higher
relevancy scores, as observed from Table 1 which combines relevance, accuracy, clarity and com-
pleteness. Our method has outperformed the previous methods across all three input settings, this
illustrates the effectiveness of using explicit attention penalty term, as it helps in discouraging atten-
tion drift to irrelevant images. This improved internal attention focus resulted in an average attention
ratio of 0.393, compared to 0.389 for MIA-DPO (Table 3). The base model exhibits an average atten-
tion ratio of 0.399 on the target image. Our approach might surpass this performance, with increase
in number of training epochs. Such enhancement demonstrates that incorporating attention signals
directly into the training objective yields superior alignment and reduces hallucinations.
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Incorporating our inference time attention adaption (based on AdaptVis Chen et al. (2025)) yielded
additional performance improvements. When confidence was high, sharpening attention distribu-
tions helped the model consolidate correct visual references which boosted accuracy scored by an
additional 0.05 points in ambiguous cases(Table 2). Conversely, broadening attention distributions
in uncertain situations prevented premature fixation on incorrect visual cues, particularly beneficial
in Grid Collage and Pic-in-Pic scenarios with improvements of 0.04 and 0.06 points respectively.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduce a scalable pipeline to improve the alignment of Large Language and
Vision Models (LLVMs) for multi-image queries. Our approach requires no human annotations and
extends existing single-image datasets into multi-image formats. Quantitative results demonstrate
that our method enhances the model’s ability to accurately allocate attention to the correct target
image.

Future work can explore applying this pipeline to more complex multi-image reasoning tasks, such
as those found in the MANTIS datasetJiang et al. (2024), where understanding multiple images is
necessary to answer a query. Additionally, the impact of various attention-based loss functions (e.g.,
log-loss) on model performance could be further investigated.

We also show that combining inference-time optimization techniques like AdaptVis with our fine-
tuned model yields promising results. Future research may delve deeper into the comparative effec-
tiveness of different inference-time strategies in mitigating hallucinations.

Finally, we observe that hallucinations are more frequent when the input includes visually similar
images—particularly when multiple images contain the same object of interest. To facilitate further
study, a benchmark dataset could be developed using our pipeline, leveraging CLIP embeddings to
sample similar images instead of random sampling. This benchmark could feature varying levels of
difficulty, directly correlated with the number of semantically related images in the query.

6 CHALLENGES AND LEARNINGS

Throughout the course of this work, we encountered several challenges and gained valuable insights:

1. Distributed training: This was the first time we have used distrusted training using Deep-
Speed. We got a chance to understand the different zero configurations, their impact on
memory usage and performance.

2. Extending DPOTrainer: To incorporate attention loss, we modified the DPOTrainer by
huggingface. This required a deep dive into the Hugging Face codebase, through which
we significantly improved our familiarity with its internal workings. Although our initial
implementation contained several bugs, careful debugging and iteration led to a functional
and effective solution.

3. AdaptVis: The AdaptVis and MIA-DPO codebases were structurally quite different. Our
first attempt to combine them involved extensive monkey patching, which introduced nu-
merous integration issues. Eventually, by selectively modifying key components within
MIA-DPO with AdaptVis code, we avoided unnecessary complexity and streamlined the
integration process.

4. Inference: The inference module in the MIA-DPO codebase had multiple issues, requir-
ing substantial debugging and refactoring. Extending it to support evaluation across our
experimental settings was time-intensive.

5. Computation graph: Incorporating attention loss also taught us a valuable lesson of de-
bugging. Always check the computation graph after modifying anything! Otherwise mod-
ifications can cause computation graph to break.

7 INDIVIDUAL CONTRIBUTIONS

Below we list individual contributions:
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1. Literature survey and ideation: Everyone contributed equally.

2. Dataset generation: Vishvesh Trivedi & Jeet Patel

3. Integrating attention loss: Shaswat Patel, Harsh Sutaria & Vishvesh Trivedi

4. AdaptVis integration: Shaswat Patel, Harsh Sutaria & Jeet Patel

5. Evaluation pipeline: Shaswat Patel, Jeet Patel & Harsh Sutaria

6. Report writing: Everyone contributed equally.
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A APPENDIX

Figure A1: LLM-as-a-Judge Evaluation Prompt
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Figure A2: Qualitative Comparison between various model outputs
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