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Abstract

Improving patient care is highly dependent on accurate clinical outcome predictions,
especially for tasks such as mortality and length of stay. Electronic Health Records
(EHR) contain essential patient information that can be harnessed by machine
learning models to predict these outcomes. However, EHR data can be noisy and
without effective feature engineering, models risk underfitting. Current frameworks
utilize large language models that offer little explainability to clinicians. To address
this dual problem, we propose ClinicalML, a lightweight pipeline designed to
de-noise EHR data, extract relevant features, and integrate Machine Learning(ML)
models for predicting critical patient outcomes. Our pipeline achieved a 0.58
macro-F1 score for clinical mortality and a 0.33 macro-F1 score for predicting
length of stay. The pipeline also offers explainability to further develop trust
between clinicians and ML models.

1 Introduction

Hospitals produce massive structured and unstructured clinical data. Intensive Care Units (ICU) are
increasingly using data and prediction models to support their decision making. Early prediction of
patient trajectory and clinical outcomes can prompt early treatments, improve outcomes, and even
save patient lives in the ICU.[1, 2] Clinicians assess patients’ condition in the intensive care unit
using a broad range of information modalities such as vitals, patient history, laboratory results, etc.
Clinical outcome predictions, such as mortality and length of stay, are among the most commonly
modeled outcomes in the ICU. However, most studies focus on the use of vital signs. These systems
often fail when vital signs for a patient are unavailable, which is common when patients have just
been admitted to the ICU.[3] In this work, we focus on using only the textual data from the EHR
available at the time of admission to predict two clinical outcomes: Mortality Prediction (MP) and
Length Of Stay (LoS).

BERT-based[4] pre-trained models have demonstrated an impressive ability to extract task-related
information from noisy, unstructured data. However, BERT models have common pitfalls: (i) they
are data intensive and require a large amount of supervised data, particularly in the context of medical
outcomes, to achieve reliable metrics [5]; and (ii) their black-box nature limits interpretability and
transparency[6]. Machine Learning (ML) methods, on the other hand, offer reliable, stable, and
explainable models that can achieve comparable results to BERT models when effective feature
engineering techniques are employed. Thus, we base our work on classical ML algorithms and pose
the following questions:

1. Can traditional Machine Learning models achieve comparable results when compared to
BERT based state-of-the-art approaches from admission notes?

2. Can traditional Machine Learning models identify and interpret common risk factors? And
what are the common limitations of ML models?



To address the aforementioned questions, we propose simulating patients at the time of admission by
extracting admission notes from MIMIC-III discharge summaries. Models built on top of this cohort
can act as early warning systems in the absence of key vital signs, thereby assisting clinicians from
the very beginning and preventing mistakes. Furthermore, models developed using this cohort can
also help hospital management plan resources more effectively by predicting length of stay (LoS).
We have also designed ClinicalML, a novel pipeline that extracts key indicators for mortality and
length of stay using Named Entity Recognition (NER), followed by a K-Means feature reducer. The
extracted features were then trained and tested using a battery of traditional ML models.

2 Related Work

Several methods for mortality prediction and hospital ICU length of stay have been adopted on large
datasets, including MIMIC-III and MIMIC-IV [7], as well as private datasets from hospitals and
institutions. However, the methods span from using handcrafted features using on traditional ML
models to using end-to-end BERT models. Furthermore, each study employs a different variant of
the underlying cohort which makes it difficult to assess the quality of the applied approach.

Score based prediction Various score based methods exist to predict mortality. Acute Physiology
and Chronic Health Evaluation (APACHE) uses 34 physiological measures captured during the initial
24 hours after ICU admission. Similarly, Simplified Acute Physiology Score (SAPS)[8] uses 12
physiological measures and Quick Sepsis-related Organ Failure Assessment Score (qSOFA)[9] uses
3 physiological measures. APACHE was further improved to include various measures not available
at the time of admission such as chronic health variables of AIDS, etc.[10]

Clinical outcome prediction using vitals Vitals contain critical real-time data on heart rate, blood
pressure, oxygen saturation, etc. that can be used to train various ML and Deep Learning (DL) models.
The AIMS model [11] used vital signs in training a CNN-LSTM model to predict mortality. AIMS
model used MIMIC-III data to create different cohorts for 3, 7, and 14- days. AIMS also reports a
confidence score which is the difference between boundary probability (= 0.5) and the predictive
probability. Chen et. al [12] proposed an attention-based temporal convolution network that uses 48
hours of vitals data to predict mortality. Their model outperformed traditional ML models in terms
of F1 score. Sadaghi [10] proposed a battery of ML models for predicting mortality based on the
first hour of ICU admission. Alghatani et. al [13] developed a model for length of stay and mortality
prediction using 12 baseline demographic features(age, gender, height, weight, etc.), and vitals. The
final model can be integrated into the Intelligent Remote Patient Monitoring (IRPM) framework.
Alabbad et. al[14] used vitals to predict the length of stay of COVID-19 patients in Saudi Arabia
using a battery of ML models.

Clinical outcome prediction using textual data While vitals can provide accurate clinical outcome
predictions, in most cases where patient has just been admitted to ICU, critical vitals are unavailable.
Hence, various studies have been conducted to utilize unstructured textual data to predict clinical
outcomes in the future. Chrusciel et al.[15] extracted known vitals from clinical texts and demographic
features to for prediction of length of stay. Aken et. al[3] used BERT based models to predict clinical
outcomes using admission notes generated from discharged summaries. Hashir et al[16] used deep
learning methods to model the temporal nature of an ICU to predict mortality using unstructured
clinical notes. Lee et al[17] proposed a neural network architecture that employs an auxiliary loss to
ensure that clinical note embeddings capture diagnostic information effectively.

Clinical outcome prediction using multimodal approach Unstructured data when combined with
vitals can further improve the predictive prowess of the underlying models. Yang et al. [18] propose a
multimodal model using fusion based approach to integrate time-series vitals data with clinical notes.
Yang et al. [19] employ a LSTM model to capture features from time-series vitals data and CNN
based model to capture features from clinical notes. Khadanga et al. [20] propose a multi-modal
deep neural network that uses recurrent units for time-series data and convolutional networks for
clinical notes. Zhu et al. [21] used Retrieval-Augmented Generation (RAG) to extract entities from
both time-series data and clinical notes. It aligns these entities with a professional knowledge graph
(PrimeKG) for consistency and richer semantics. The framework generates task-relevant summaries
of patients’ health statuses, which are then fused with other modalities using an adaptive multimodal
fusion network.
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PRESENT ILLNESS: 58yo man w/ hx of hypertension, 
AFib on coumadin and NIDDM presented to ED with the
worst headache of his life. He had a syncopal episode
and was intubated by EMS. Medication on admission: 
1mg IV ativan x 1.

PHYSICAL EXAM: Vitals: P: 92 R: 13 BP: 151/72
SaO2: 99% intubated. GCS  E: 3   V:2  M:5
HEENT:atraumatic, normocephalic Pupils: 4-3mm [...]

FAMILY HISTORY: Mother had stroke at age 82.
Father unknown.

SOCIAL HISTORY: Lives with wife. 25py. No EtOH

DIAGNOSES:
430 Subarachnoid Hemorrhage
401 Essential Hypertension
250 Diabetes Mellitus [...]

PROCEDURES:
397 Endovascular Repair of Vessel
967 Continous Invasive Mechanical Ventilation [...]

IN-HOSPITAL MORTALITY:
Not deceased

LENGTH OF STAY:
> 14 days

 Symptoms & Vitals 

 General Risk Factors 
 Medications 
 Pre-Conditions 

ADMISSION DISCHARGE

Figure 1: Adapted from [3] Admission to discharge sample that demonstrates the outcome prediction
task. The model has to extract patient variables and learn complex relations between them in order to
predict the clinical outcome.

Single-label tasks: Samples per class
Mortality Length of Stay (in days)
0 1 ≤ 3 >3 & ≤ 7 >7 & ≤ 14 > 14

43,609 5,136 5,596 16,134 13,391 8,488

Table 1: Distribution of labels for Mortality Prediction and Length of Stay task. Both tasks have
unbalanced class distributions.

3 Dataset

Our primary data source is EHR data from MIMIC III v1.4[22] which includes de-identified clinical
notes from the Intensive Care Unit (ICU) of Beth Israel Deaconess Medical Center in Massachusetts.
For mortality and readmission prediction, we have utilized the cohort established by Van Aken et al.
(2021)[3], which simulates newly arrived patients by extracting admission notes from MIMIC III
discharge summaries. Figure 1 describes the schematic of generating the cohort.

The cohort filters the discharge summary section provided NOTEEVENTS.csv of MIMIC-III by
sections that are known at admission such as: Chief complaint, (History of) Present illness, Medical
history, Admission Medications, Allergies, Physical exam, Family history and Social history. The
task outcome labels like in-hospital mortality and length of stay is extracted from ADMISSIONS.csv
table of MIMIC-III.

While preparing the cohort, direct indications of task outcome such as mentions of patient deceased
for mortality or dates mentioning discharge are filtered to prevent data leak. Moreover, cases of
deaths immediately following ICU admission have been omitted. After cleaning, the data amounts to
48,745 and 43,609 training instances for MP and LoS respectively. The data distribution for MP and
LoS are provided in Table 1 and patient demographic details in Table 2.

Criteria Class Train (MP) Test (MP) Train (LoS) Test (LoS)

Gender Male 19102 5482 17190 4941
Female 14852 4340 13231 3856

Ethnicity

Asian 810 218 718 199
Black 3137 1047 2896 961
Hispanic 1184 326 1121 302
White 24381 7019 21905 6271
Excluded 4442 1212 3781 1064

Age Group

0-20 310 74 298 72
20-40 3076 920 2933 876
40-60 9471 2707 8778 2518
60-80 14135 4148 12674 3678
80+ 6962 1973 5738 1653

Table 2: MIMIC-III MP and LoS Cohorts
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Figure 2: From top-left to bottom-right: a.) 20 Most common diseases found in patients. b.)
Distribution of number of diseases among patients c.) 20 Most common therapeutics prescribed. d.)
Distribution of number of therapeutics prescribed to patients at admission time

4 Methods

In this study, we hypothesize that both therapeutics and disease entities are critical predictors of
clinical outcomes. To test this hypothesis, we develop the ClinicalML pipeline, a machine learning
framework that consists of three main stages: (1) data preprocessing and feature preparation, (2)
feature representation, and (3) classification using traditional machine learning models.

4.1 Feature Extraction and Selection

To identify and extract relevant features from clinical notes, we employ Named Entity Recognition
(NER) tools to extract mentions of therapeutics and diseases. For therapeutic entities, we utilize
the Med7 NER tagger [23], while for disease entities, we adopt HunFlair [24]. Figure 4b illustrates
examples of extracted disease entities, including acronyms such as systolic blood pressure(SBP) and
misspelled terms like “in hct.”

To address noise and redundancy in the extracted entities, we perform entity normalization by
clustering semantically similar terms. Specifically, we apply K-Means clustering on word embeddings
generated by BioClinicalBERT [25]. Using the FAISS library [26], we run K-Means with 256 clusters
and 200 iterations to obtain cluster centroids. Each extracted entity is then mapped to its corresponding
centroid. As shown in Figure 4b, this process groups misspelled terms and abbreviations with their
canonical forms into the same cluster.

4.2 Feature Representation

The mapped entities are used to construct a one-hot encoding that captures the presence or absence
of each normalized disease entity. This representation is particularly important, as the absence of
certain diseases can also significantly impact the model’s predictions.

4.3 Training Classifiers

The one-hot encoded feature vectors are used to train a suite of traditional machine learning models,
including Logistic Regression (LR), Random Forest (RF), Gradient Boosted Trees (GBBoost), and
eXtreme Gradient Boosting (XGBoost) [27, 28, 29, 30].
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1. Feature Extraction & Selection 2. Feature Representation

3. Training ML Classifiers

MIMIC-III
dataset

CHIEF COMPLAINT: 
Patient is experiencing chest 
pain with light dizziness.
MEDICATION ON 
ADMISSION: Meclizine 
25 mg PRN, Atenolol 50 
mg daily …
FAMILY HISTORY: 
History of hypertension 
and diabetes type - II

DRUGS = 
[ "Meclizine", 
"Atenolol", 
"Amlodipine", 
"Nitroglycerin", 
"Omeprazole",]

DISEASES= 
[ "Chest Pain",
“Light Dizziness”, 
“Hypertension”,
“Diabetes Type II”]

Med-7 
NER Tagger

HunFLAIR 
NER Tagger

BioClincial BERT Embeddings

K-Means Clustering (FAISS)

256 drug clusters 256 disease clusters DIS_MAPPING= 
{"Chest Pain": 45,
“Light Dizziness: 88”, 
“Hypertension”: 123,
“Diabetes Type II”: 4}

DRUG_MAPPING= 
{"Meclizine": 134, 
"Atenolol": 15, 
"Amlodipine": 49, 
"Nitroglycerin": 15, 
"Omeprazole: 213}

Reverse 
Mapping 
Function

DRUGS_256ONEHOT: 
[0, 0, 1, … 0, 1, 0] 

DISEASE_256ONEHOT: 
[1, 0, 0, … 1, 0, 0] 

Logistic 
Regression

Random 
Forest

Gradient 
Boosted 
Decision 

Trees

XGBoost

X_train (drug/dis): 
[0, 0, 1, … 0, 1, 0] 

y_train_MP: 
[0, 0, 1, … 0, 1, 0] 

y_train_LOS:
[0, 1, 0, 2, 1, 3]

Figure 3: Overview of ClincialML pipeline. We first construct the admission notes cohort based
on [3]. We then utilize Med7 NER tagger [23] and HunFlair [24] to extract drug and disease names
respectively. For dimensionality reduction, we adopt K-means clustering on BioClincicalBERT
embeddings of the extracted entites, to derive 256-sized clusters which are then reverse mapped on
the entities to create OneHot Vectors. Using reduced OneHot feature vectors of therapeutics and
diseases, we train a suite of ML models on the Mortality Prediction and Length of Stay Task.

Figure 4: From left to right a.) Feature importance analysis for Logistic Regression for LoS task
trained using diseases. Cluster 216 is the most important cluster for LoS task. b.) Word cloud of
cluster 216, illustrating all the diseases associated with cluster 216.

Model (Features) Technique Precision Recall F1-score

XGBoost (Clinical Text)
Imbalanced Classes 0.63 0.51 0.50
SMOTE 0.56 0.59 0.57
Oversampling 0.62 0.55 0.58

XGBoost (Disease)
Imbalanced Classes 0.60 0.51 0.50
SMOTE 0.52 0.52 0.52
Oversampling 0.57 0.64 0.58

XGBoost (Therapeutics)
Imbalanced Classes 0.65 0.51 0.50
SMOTE 0.51 0.52 0.49
Oversampling 0.56 0.61 0.56

Table 3: Comparison of XGBoost performance using different resampling techniques for Mortality.
Oversampling results in best performance for all our feature sets (marked in bold).
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Model (Features) Technique Precision Recall F1-score

XGBoost (Clinical Text)
Imbalanced Classes 0.35 0.30 0.30
SMOTE 0.32 0.32 0.32
Oversampling 0.35 0.32 0.32

XGBoost (Disease)
Imbalanced Classes 0.34 0.33 0.29
SMOTE 0.31 0.33 0.32
Oversampling 0.33 0.36 0.33

XGBoost (Therapeutics)
Imbalanced Classes 0.34 0.28 0.25
SMOTE 0.28 0.29 0.28
Oversampling 0.30 0.31 0.30

Table 4: Comparison of XGBoost performance using different resampling techniques for LoS.
Oversampling results in best performance for all our feature sets (marked in bold).

5 Experiments

We conducted series of experiments to evaluate the performance of various approaches on our
clinical outcome prediction tasks. Each experiment was designed to test different aspects of feature
representation and model robustness, especially in handling challenges like class imbalance and high-
dimensional data. We baseline our methods against the approach proposed by Van Aken et al.[3] by
training and testing BioBERT[31], SciBERT[32], and UMLS-BERT models[33]. For benchmarking,
we consider macro F1-score, which averages F1 scores across classes giving equal weightage to all
classes irrespective of their proportions in the data. Table 5 and Table 6 depict comprehensive results
covering all our experiment combinations.

5.1 Imbalanced Classes: No Resampling vs. SMOTE vs. Oversampling

Class imbalance poses a significant challenge in clinical datasets, particularly for mortality prediction
where the majority class can dominate. To address this, we compared the performance of models
trained on the original dataset (no resampling) with those using Synthetic Minority Oversampling
Technique (SMOTE) [34] and simple oversampling of the minority class to make all instances
equal to majority class. These methods aim to mitigate imbalance by either synthesizing new
samples (SMOTE) or duplicating existing ones (oversampling). For all types of features, XGBoost
model has illustrated that a simple oversampling technique of resampling the underrepresented tasks
by duplicating existing examples has outperformed SMOTE and imbalanced dataset. An overall
improvement ranges between 0.01 - 0.07 in terms of macro F1 score when using simple oversampling
technique. Table 3 and Table 4 demonstrate results obtained using various sampling techniques.

5.2 Using only Therapeutics as Features

For this experiment, we utilized extracted therapeutic-related features. Therapeutic features were
extracted using the Med7 entity tagger. This process involved identifying and tagging all mentions of
medications in the clinical text, followed by the creation of a vocabulary of unique drugs. Due to
the large vocabulary size, we applied dimensionality reduction techniques to ensure computational
efficiency. Specifically, we used BioClinicalBERT embeddings to convert the drugs into dense vector
representations and performed clustering using FAISS k-Means. This enabled us to group similar
drugs into clusters of sizes 256.

The models were then trained using both one hot encoded features and the reduced feature sets. For
both MP and LoS task using only therapeutics, XGBoost has achieved an F1-score(macro) of 0.56
and 0.30 respectively.
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5.3 Using Only Diseases as Features

Disease mentions in clinical text often serve as stronger predictors for clinical outcomes compared
to drug mentions. For this experiment, we extracted disease entities using the Flair Named Entity
Recognition (NER) framework. Similar to the approach used for drugs, we applied BioClinicalBERT
embeddings to represent diseases and reduced the dimensionality through FAISS k-Means clustering.

Traditional ML models trained using only diseases features were able to outperform the models
trained using Therapeutics. For both MP and LoS task XGBoost has outperformed other ML models,
XGBoost has achieved an F1-score(macro) of 0.58 and 0.33 respectively. The results also illustrate
that disease-based features are more informative for both mortality prediction and length of stay when
compared to therapeutics based features.

5.4 Using Doc2Vec Embeddings as Features

To also explore the potential of lightweight models capturing holistic information from the clinical
text, we experimented with Doc2Vec [35] embeddings. This approach leverages BioWordVec [36] to
generate dense representations of entire clinical documents, allowing the model to learn from the full
text without the need for explicit feature engineering. By using this method, we aimed to capture the
semantic context and relationships within the text that may not be evident from individual features
such as drugs or diseases.

XGBoost trained on Doc2Vec embedding has outperformed other traditional ML models, it has
achieved an F1-score(macro) of 0.58 and 0.32 for MP and LoS task respectively. The results demon-
strate that Doc2Vec embeddings provide a balanced representation of the clinical text, improving the
model’s ability to generalize across different tasks.

5.5 Feature Importance Analysis

For the feature importance analysis we have considered Logistic Regression(LR) for length of
stay task trained using diseases. Figure 4 illustrates the most important weights LR. The weights
associated with cluster 216, which contains diseases such as systolic blood pressure (SBP), troponin,
hematocrit (HCT) etc. have shown indications for length of stay.[37, 38, 39, 40] Lower levels of SBP
are indicative for longer stay in ICU as it signifies more sever underlying condition.[39] Lower levels
of HCT are indicative of longer stay in ICU.[40] Higher levels of Troponin is indicative for longer
stay in the ICU as troponin is indicative of heart heart.[37]

6 Discussion and Conclusion

Our proposed method achieves results close to BERT based baselines. XGBoost trained on disease,
therapeutics and entire clinical text features yields the best results for both tasks. Mortality prediction
in clinical settings is inherently challenging, largely due to the complexity and variability of patient
data. Furthermore, our cohort designed at admission time is especially challenging as the amount of
information is limited. One key takeaway from our study is the weak correlation between therapeutics
mentioned in discharge notes and mortality outcomes. Diseases show stronger predictive power for
mortality outcomes as shown by our results. Furthermore, feature importance of LR(Figure 4) for
LoS trained on diseases illustrates strong clinical correlations. Our results also demonstrate the value
of traditional machine learning (ML) models. Although they slightly underperform compared to
BioBERT in terms of macro F1-score, they achieve comparable results within a 10% margin while
offering greater explainability. This makes them a more trustworthy option from clinicians point
of view scenarios where interpretability is a priority.[41] However, traditional ML models might
struggle to capture nuanced relationships between drugs, diseases, and outcomes, which language
models like BioBERT can identify more effectively. For instance, our proposed approach is unable
to capture the level of SBP i.e. whether it is high or lower. It only captures the presence of SBP.
Finally, our analysis highlights the importance of task-specific feature engineering. While feature
embeddings like Doc2Vec outperform NER-based pipelines by leveraging holistic information from
the clinical text, diseases remain the most reliable predictors. Future work could explore integrating
richer temporal data and real-time patient monitoring to further improve clinical prediction models.
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Model Features Precision Recall F1-score

BioBERT Entire clinical text 0.62 0.72 0.64
SciBERT Entire clinical text 0.63 0.60 0.61
UMLS-BERT Entire clinical text 0.51 0.50 0.47

XGBoost
Doc2Vec 0.62 0.55 0.58
Diseases 0.57 0.64 0.58
Therapeutics 0.56 0.61 0.56

Gradient Boosted Trees
Doc2Vec 0.55 0.62 0.52
Diseases 0.57 0.66 0.56
Therapeutics 0.53 0.54 0.53

Logistic Regression
Doc2Vec 0.57 0.69 0.54
Diseases 0.57 0.67 0.55
Therapeutics 0.55 0.63 0.54

Random Forests
Doc2Vec 0.95 0.50 0.47
Diseases 0.56 0.51 0.50
Therapeutics 0.55 0.52 0.52

Table 5: Performance metrics of various models and features for mortality prediction. The best
F1-score overall is highlighted in bold. The best F1-score for each model across the three feature sets
is highlighted in italic + bold.

Model Features Precision Recall F1-score

BioBERT Entire clinical text 0.39 0.35 0.36
SciBERT Entire clinical text 0.43 0.37 0.38
UMLS-BERT Entire clinical text 0.39 0.35 0.35

XGBoost
Doc2Vec 0.35 0.32 0.32
Diseases 0.33 0.36 0.33
Therapeutics 0.30 0.31 0.30

Gradient Boosted Trees
Doc2Vec 0.30 0.32 0.30
Diseases 0.33 0.35 0.31
Therapeutics 0.29 0.29 0.29

Logistic Regression
Doc2Vec 0.34 0.38 0.32
Diseases 0.33 0.35 0.32
Therapeutics 0.29 0.31 0.29

Random Forests
Doc2Vec 0.34 0.30 0.30
Diseases 0.33 0.33 0.33
Therapeutics 0.30 0.30 0.30

Table 6: Performance comparison of models with different features for length of stay (LoS) prediction.
The best F1-score overall is highlighted in bold. The best F1-score for each model across the three
feature sets is highlighted in italic + bold.
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